
ar
X

iv
:h

ep
-p

h/
96

07
26

6 
v1

   
9 

Ju
l 1

99
6

DTP-96/60
July, 1996

Chiral poles and zeros

and the role of the left hand cut

M. Boglione 1,2

and

M.R. Pennington 1

1 Centre for Particle Theory, University of Durham

Durham DH1 3LE, U.K.

2 Dipartimento di Fisica Teorica, Università di Torino and
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Abstract
It has been recently claimed that the Inverse Amplitude Method
provides a reliable unitarisation of Chiral Perturbation Theory
allowing resonance poles to be accurately uncovered. We illustrate
the sensitivity of these claims to the treatment of the Adler zero
and to assumptions about the left hand cut (and hence about the
underlying exchange forces). Previously favoured methods are
shown to mistreat the Adler zeros and violate crossing symmetry
casting doubt on the precision of their phenomenology. A more
reliable solution is proposed.
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1. Introduction

Developments in chiral perturbation theory (χPT) have led to a resurgence of interest

in low energy ππ scattering [1, 2]. The predictions of χPT unambiguously apply to

the ππ process in the subthreshold region. Chiral dynamics demands that ππ and

πK amplitudes have zeros below threshold. These are the on-shell appearance of the

Adler zero and they occur in each S-wave amplitude [3]. These zeros of course occur

in physical amplitudes.

Recently, much attention has been paid to how to compare the predictions of χPT with

experiment [4, 5]. A key discussion point concerns how far one can reliably continue

the χPT amplitudes above threshold to where experimental information exists? It is a

feature of the physical world that resonances dominate the behaviour of isospin I ≤ 1

partial waves. Resonances, however, do not appear in χPT at any finite order, since

low energy resonant amplitudes are non-perturbative in their fulfillment of unitarity.

Consequently, the issue of how to extract resonance physics from the chiral expansion

has been a topic of heated debate [4, 5].

Dispersion relations provide an invaluable connection between scattering amplitudes in

one energy region and another. They connect the subthreshold region where χPT ap-

plies and the world of resonance physics. However, their evaluation requires knowledge

not just of the singularity structure of the amplitude, but of the exact form of its dis-

continuity across any cut; for example we must know the imaginary part to determine

the real part of each amplitude. A seemingly significant advantage of considering the

dispersive representation of the inverse of a partial wave amplitude is that its right hand

cut discontinuity is just given by phase space in the elastic region, thanks to unitarity.

Consequently, when the integral along this cut is controlled by the low energy region,

it can be evaluated reliably without any further information. While what we might

regard as “kinematics” fixes the right hand cut, dynamics is built in by assumptions

about the left hand cut. Indeed, this is the basis of the N/D method [6].

While partial wave amplitude, t(s), have right and left hand cuts, unitarity does not

allow them to have poles on the physical sheet. As a consequence, their inverses, f(s),
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have similar right and left cuts. However, partial wave amplitudes can and do have

zeros, which in turn means their inverses have poles on the physical sheets, making

their singularity structure a little more complicated. These poles are the essence of

chiral dynamics.

Very recently Dobado and Peláez [7] have used dispersion relations for the inverse ππ

and πK amplitudes and ignored the appearance of such poles. This has allowed them

to derive a Padé-like approximant as the sum of chiral perturbative predictions for

the S-wave amplitudes, rather like that much used for the P -wave [8]. Their choice

of approximations gives a description that does agree with experiment. However, we

show here how strongly these essentially dispersive continuations of the predictions of

χPT depend on

(i) the left hand cut discontinuity,

(ii) the existence of chiral poles,

(iii) additional summation assumptions implicit in the Padé

approximation.

Indeed, within each set of assumptions, good agreement with experiment below 800

MeV is possible, depending on different choices of the O(p4) χPT parameters `i for

i = 1, 2 [1]. Thus this is not a reliable way of determining the `i.

In the next section we give a general introduction to an inverse amplitude method and

the treatment of chiral poles. We propose several alternative forms for the left hand

cut discontinuity and in sect. 3 show how the physical region results depend on these.

In Sect. 4 we give our brief conclusions.

2. The amplitude and its inverse

Consider the ππ partial wave amplitudes, tIJ(s), with isospin I and spin J . Defining s

to be usual square of the c.m. energy and denoting the pion mass by µ, elastic unitarity
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requires

Im tIJ (s) = ρ(s) | tIJ(s) | 2 (1)

where ρ(s) ≡
√

1 − 4µ2/s. In practice, the first significant inelastic channel opens up

only at KK threshold. J ≤ 1 partial waves control ππ scattering in this region. Now

each S and P -wave, t(s) (dropping I, J labels for simplicity), has a zero at s = s0. For

the S-waves, these are demanded by the Adler condition; for the P -wave, the zero is

kinematic being at threshold so s0 = 4µ2. 1 The inverse, f(s), of each of these partial

wave amplitudes will thus have a simple pole at s = s0, with residues r. Consequently

we define

fpole(s) ≡
r

s − s0

. (2)

Now we shall assume that | f(s) | < s as s → ∞, so that each f(s) satisfies a once

subtracted dispersion relation with s = s1, the subtraction point,

f(s) = fpole(s) + c +
(s − s1)

π

∫

∞

4µ2

ds′

(s′ − s1)(s′ − s)
Im f(s′)

+
(s − s1)

π

∫ 0

−∞

ds′

(s′ − s1)(s′ − s)
Im f(s′) . (3)

Im f(s) is to be evaluated above both cuts; c is a constant simply related to the value

of the inverse amplitude at the subtraction point s = s1. Care must be taken if s1 is

chosen to be the position of the simple pole in Eq. (2), i.e. s1 = s0, then

c = lim
s→s0

(f(s) − fpole(s)) .

Since χPT is believed to describe ππ scattering in the subthreshold region quite accu-

rately, the idea is to use its predictions to fix the position of the chiral pole (s = s0) in

the inverse amplitude and its residue r and the subtraction constant c, from the value

of f(s) at the subthreshold subtraction point. The partial wave may well converge

faster than we assume Eq. (3), so that subtractions are not needed. However, the

advantage of making a subtraction is that the more distant parts of the cut disconti-

nuities play less of a role for the region of interest, −0.5 < (s − 4µ2) < 0.5 (GeV2).

The physics contained in these distant and poorly known contributions is replaced by

the subthreshold subtraction term fixed by χPT .
1Higher partial waves have higher order zeros, of course.
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To evaluate the dispersive representation of Eq. (3), we must know the imaginary parts;

clearly

Im f(s) = Im
1

t(s)
= − Im t(s)

| t(s) | 2 . (4)

For 4µ2 < s ≤ 1 GeV2, this just equals −ρ in the elastic region, Eq. (1). The fact

that the low energy right hand cut is specified by non-linear unitarity, Eq. (1), is a key

step in building non-perturbative (and hence resonance) physics into the amplitudes

t(s). Indeed, since the elastic region extends essentially up to KK threshold, the right

hand cut contribution of Eq. (3) can be reliably computed up to 750 MeV or so for the

I = 0 S-wave and even higher for the I = 2 S-wave and I = 1 P -wave, for which the

inelasticity is naturally weaker. We therefore set Im f(s) = −ρ(s) everywhere along

the right hand cut as a reasonable approximation. The right hand cut integral of Eq. (3)

can then be performed analytically and involves the Chew-Mandelstam function J(s)

of one loop χPT [1], so that the integral is just −16π(J(s) − J(s1)). However, the left

hand cut is also crucial and we adopt a number of different schemes for its calculation,

which we now describe.

Scheme I involves the simplest of all assumptions and sets the left hand cut disconti-

nuity equal to zero. Of course, this violates crossing symmetry. It is impossible for the

right hand cut to be non-zero and the left hand cut, generated by exchange forces, to be

zero for amplitudes that are crossing symmetric as ππ is. Nevertheless, this provides a

base from which to judge the dependence on the assumed left hand cut. The dispersive

representation of Eq. (3) is evaluated with the subtraction constant specified by one

loop χPT at s1 = 4µ2/3 — a point conveniently between the two cuts. This we call

scheme I.

Scheme II is to assume that the left hand cut discontinuity is given by one loop

χPT out to s = −(M2 − 4µ2) with M typically 0.5-0.6 GeV and to assume it to be

constant beyond that. This is in keeping with the notion that χPT predictions may be

believed for t, u ≤ (0.6 GeV)2 and that the distant left hand cut should not have too

big an effect on the direct channel amplitude for s < 1 GeV2. The subtraction term is

fixed as in Scheme I with s1 = 4µ2/3. As an illustration we plot in Fig. 1 the inverse

I = 0 S-wave amplitude (as an example) in Scheme II. We see how the subthreshold
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pole dominates the low energy amplitude throughout the region of |s| < 1 GeV2. This

spotlights the perils of neglecting its appearance [7]. In no sense can the residue of the

pole be regarded as small [9]. In Fig. 2 we plot f(s) − fpole(s), again for the I = 0

S-wave, to indicate the difference using Scheme I or II makes to the physical region

amplitude we wish to compare with experiment.

Scheme III is a stronger assumption, closer to that of Dobado and Peláez [7]. This

is to note that one loop χPT satisfies unitarity (perturbatively) along the right hand

cut, viz. Eq. (1), by

Im t(1)(s) = ρ | t(0)(s) |2, (5)

where the bracketed superscripts label the order in the chiral expansion at which the

whole partial wave is computed. It is then useful to note that the tree level amplitudes

have the simple structure

t(0) =
s − s

(0)
0

r(0)
(6)

where s
(0)
0 is the position of the zero (Adler zero for the S-waves, threshold zero for the

P -wave) and r(0) is the residue of the corresponding pole in the inverse amplitude. As

is well-known [3],

s
(0)
0 = µ2/2 for the I = 0 S−wave,

= 4µ2 for the I = 1 P−wave, (7)

= 2µ2 for the I = 2 S−wave.

with residues

r
(0)
0 = 16π F 2 for the I = 0 S−wave,

= 96π F 2 for the I = 1 P−wave, (8)

= −32π F 2 for the I = 2 S−wave.

where F is the pion decay constant in the chiral limit, F = 0.94Fπ viz. [1]. In scheme III

we assume along the left hand cut too that

Im
1

t(s)
≡ − Imt(s)

| t(s) |2 ' −Imt(1)(s)

(t(0)(s))2
. (9)
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This allows us to avoid explicitly evaluating a dispersive representation [8, 7], as fol-

lows : the one loop χPT amplitude t(1) grows asymptotically like s2 modulo logarithms.

Let us consider the function

∆t(s) ≡ t(1)(s) − t(1)(s1) − (s − s1)
d

ds
t(1)(s1)

− 1

2
(s − s1)

2 d2

ds2
t(1)(s1) (10)

where s1 is again a subtraction point in the subthreshold region. Then the function

∆t(s)/(s− s1)
2 will satisfy a once subtracted dispersion relation with zero subtraction

constant, so that

∆t(s)

(s − s1)2
=

(s − s1)

π

∫

∞

4µ2

ds′
Im t(1)(s′)

(s′ − s1)3(s′ − s)

+
(s − s1)

π

∫ 0

−∞

ds′
Im t(1)(s′)

(s′ − s1)3(s′ − s)
(11)

This is just the statement that the amplitudes of χPT are analytic in the cut plane.

Conveniently, choosing the subtraction point s1 to be the position of the tree level zero,

i.e. s1 = s
(0)
0 , we have noting Eq. (6)

∆t(s)

(t(0)(s))2
=

(

s − s
(0)
0

)

π

∫

∞

4µ2

ds′
Im t(1)(s)

(

s′ − s
(0)
0

)

(s′ − s)(t(0)(s′))2

+

(

s − s
(0)
0

)

π

∫ 0

−∞

ds′
Im t(1)(s)

(

s′ − s
(0)
0

)

(s′ − s)(t(0)(s′))2
(12)

Now using Eqs. (5,9), Eq. (3) and Eq. (12) can be simply added to give :

1

t(s)
=

r

s − s0

+ c − t(1)(s)

(t(0)(s))2
+

t(1)(s
(0)
0 )

(t(0)(s))2

+
r0

t(0)(s)

d

ds
t(1)(s

(0)
0 ) +

1

2
(r0)

2 d2

ds2
t(1)(s

(0)
0 ) (13)

Uniquely for the P -wave, the zero of the full partial wave amplitude and that of the

tree level approximation are at the same position, viz. s
(0)
0 = s0 = 4µ2. Then for the

P -wave amplitude, we have
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1

t(s)
=

1

t(0)(s)

(

r

r0

+
r0

r

)

− t(1)(s)

(t(0)(s))2

− 1

2
(r2 − r2

0)
d2

ds2
t(1)(s

(0)
0 ) (14)

If we further assume that the P -wave scattering length for the full χPT amplitude is

the same as for the tree level approximation, then r = r0 and we obtain 2

1

t(s)
=

2

t(0)(s)
− t(1)(s)

(t(0)(s))2

i.e.

t(s) =
t(0)(s)2

2t(0)(s) − t(1)(s)
(15)

which is the [1, 1] Padé approximant introduced by Truong [8]. But note the key chain

of assumptions needed to deduce this.

This brings us to scheme IV. This is again to assume the left hand cut discontinuity

for all s < 0 is given by Eq. (9) and further to assume for each all orders partial wave

amplitude that the position of the zero and the slope there are both just as for the tree

level amplitude, i.e. s0 = s
(0)
0 and r = r0. This gives Eq. (15) for each S and P -wave

amplitude. This is the scheme of Dobado and Peláez [7]. Of course, the S-wave zeros

crucially move making this approximation poor, as we shall see.

Each of these schemes provides a continuation into the physical region of the predictions

of χPT, that are assumed exact in the neighbourhood of the subtraction point in the

subthreshold region. Though of course the underlying chiral amplitudes satisfy crossing

symmetry exactly at each order, these continuations do not. We can test this failure

by evaluating the five crossing sum rules that involve just the S and P -waves. If these

relations were exactly satisfied they guarantee that there exists a ππ amplitude with

the correct crossing properties with these precise ` = 0 and 1 partial waves. In the

appendix, we detail what these relations are and specify a measure by which we tell

how well each of our approximations satisfies crossing. We tabulate the results in the

next section.

2n.b. t(1)(s) means the full one loop partial wave and not just the one loop correction of Refs. [8, 7].
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3. Results

In this section we display the results of the calculation of the 3 lowest partial wave

amplitudes according to each of the four Schemes (described in the last section) for

approximating the left hand cut contribution. To determine the subtraction term c

and pole position s0 and residue r of Eqs. (2,3) from χPT to one loop order, we have

to choose values for the parameters `i of the SU(2) Chiral Lagrangian. As a guide we

take the values [10]

`1 = −0.3, `2 = 4.5 . (16)

The formulae for the ππ invariant amplitude to one loop are taken from Eq. (17.1) of

Ref. [1], in which recall F = 0.94Fπ where Fπ = 93 MeV. The resulting elastic partial

waves can then be expressed in terms of the corresponding phase-shift δI
J by way of

the standard representation

tIJ (s) =
1

ρ
sin δI

J exp
(

iδI
J

)

. (17)

In Figs. 3-5, we show the phase-shifts for the I = 0, 2 S-waves and the I = 1 P -

wave from each of the calculational schemes, together with experimental data from

the LBL analysis of Protopopescu et al. [11], the CERN-Munich results of Ochs [12]

and of Hoogland et al. [13], and the Ke4 results of Rosselet et al. [14]. The curves I,

II, III show rather dramatically how changing the left hand cut discontinuity, while

keeping the same underlying chiral perturbative amplitude (i.e. the same subtraction

constant c, pole position s0 and residue r in Eqs. (2,3,13)), alters the partial waves

in the physical region. Fig. 4 illustrates how the left hand cut (which is produced by

exchange forces) determines the generation of the ρ-resonance — a fact on which the

bootstrap principle was based [6]. Changing from curves III to IV illustrates the effect

of assuming the chiral pole’s position and residue are as in the tree level amplitude

(without altering the left hand cut discontinuity), implicit in the Padé-like summation

of Refs. [8, 7]. This demonstrates that a scheme like IV cannot be regarded as an

accurate way of determining the Lagrangian parameters `I (i = 1, 2). In fact, we see

that, with the choice of the `i of Eq. (16), Scheme II provides the best agreement with

data. However, by a suitably different choice of the Lagrangian parameters any of the
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other Schemes can be made to agree better with experiment — but not for all of the

waves at one time as we now explain.

An independent way to test the consistency of each approximation scheme is to check

how well crossing symmetry is fulfilled by the resulting 3 lowest partial waves. The

problem of how to express the consequences of crossing symmetry — a property of the

full amplitude — in terms of a finite number of partial waves was solved more than

25 years ago by Balachandran and Nuyts [15] by considering the amplitudes in the

Mandelstam triangle. An explicit realisation of these subthreshold relations, known

as crossing sum rules, was given shortly thereafter by Roskies [16]. These provide a

necessary and sufficient set of conditions for crossing. In the Appendix we give the five

sum rules that involve just the S and P -waves.

Scheme l.h.cut cross1 cross2 cross3 cross4 cross5

I none 1.0 0.6 0.5 0.9 0.6

II Eq. (3) 0.2 0.1 0.1 0.2 0.0

III Eq. (13) 1.0 0.2 1.1 1.3 0.9

IV Eq. (15) 1.3 0.0 1.5 1.5 1.2

Table 1: Tests of the crossing sum rules, Eqs. (A1-5), as defined
by the ratio R in Eq. (A6) each expressed as a percentage.

In Table I we show how the partial waves calculated in each scheme fulfil these relations

in terms of the measure defined in Eq. (A6). We see that if the partial waves have no

left hand cut (Scheme I) crossing is violated by 0.5-1.0%. In contrast, if the nearby

part of the left and right hand cuts are given by one loop χPT (Scheme II), then the

violation is only 0.1-0.2%. Since having no left hand cut, but explicitly having a right

hand cut, is clearly in violation of crossing symmetry, the 1% violation of Scheme I sets

the scale for the level of violation. As already mentioned, by making the underlying

chiral amplitude different by a different choice of the `i a partial wave in any scheme

can be brought into agreement with experiment. However, only for Scheme II with its
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near crossing symmetry can this be achieved for each partial wave simultaneously. We

see that Schemes III and IV, in which the left hand cut for the inverse amplitude is

approximated by Eq. (9), give a larger violation than even having no left hand cut.

4. Conclusions

Dispersion relations for the inverse partial wave amplitudes provide a method of impos-

ing a right hand cut structure consistent with unitarity. Thus this method is a useful

way of continuing the predictions of χPT at any order, into the physical regions where

the non-linearity of unitarity determines resonant behaviour. Considering ππ scat-

tering, we have shown here how strongly these continuations depend on the assumed

left hand cut discontinuity and on our knowledge of the position and residue of the

subthreshold poles that are the key embodiment of chiral dynamics. We have shown

how crossing symmetry allows us to select between different approximation schemes.

Not surprisingly neglecting the left hand cut (and by inference exchange forces) vio-

lates crossing. However we have seen that the favoured Padé-like sums violate crossing

even more strongly. Consequently, calculations based on such approximation schemes

cannot be regarded as reliable ways of determining the Chiral Lagrangian parameters

`1, `2.

The inverse amplitude method is a way of unitarising the predictions of χPT. However,

different assumptions on how to implement the method have a considerable effect on

the physical region predictions and the subsequent comparison with data. Reassuringly,

the requirement of crossing symmetry brings closer agreement with experiment as our

Scheme II demonstrates. This suggests a more reliable continuation of χPT into the

physical region could be obtained by using the crossing sum rules to restrain the form

of the left hand cut discontinuity and the corresponding values of the Lagrangian

parameters `1, `2. Then the inverse amplitude method might achieve the precision

phenomenology earlier treatments claim and be able to predict the resonance poles

that control low energy meson scattering processes.
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Appendix A

Below we give the integral relations crossing symmetry imposes on the ππ partial wave

amplitudes, tIJ(s), with isospin I and spin J ≤ 1 [16] :

∫ 4µ2

0
ds (4µ2 − s) (3s − 4µ2)

(

t00(s) + 2t20(s)
)

= 0 (A1)

∫ 4µ2

0
ds (4µ2 − s)

(

2 t00(s) − 5t20(s)
)

= 0 (A2)

∫ 4µ2

0
ds (4µ2 − s) (3s − 4µ2)

(

2 t00(s) − 5t20(s)
)

+9
∫ 4µ2

0
ds (4µ2 − s)2 t11(s) = 0 (A3)

∫ 4µ2

0
ds (4µ2 − s) s2

(

2 t00(s) − 5t20(s)
)

+3
∫ 4µ2

0
ds (4µ2 − s)3 t11(s) = 0 (A4)

∫ 4µ2

0
ds (4µ2 − s)2 s2

(

2 t00(s) − 5t20(s)
)

+3
∫ 4µ2

0
ds (4µ2 − s)2 (8µ2 − 3s) s t11(s) = 0 . (A5)

Each of these relations can be written generically as

∫ 4µ2

0
ds ω(s)

∑

I

αI tIJ(s) = 0 .

where the αI are constants. A measure of how close any integral is to zero can be

assessed by forming the ratio

R =

∫ 4µ2

0 ds ω(s)
∑

I αI tIJ (s)
∫ 4µ2

0 ds ω(s) | ∑

I αI tIJ(s) |
(A6)

This is the quantity expressed as a percentage that we quote in Table I for each of the

five sum rules of Eqs. (A1-5). As is well known the tree level amplitudes [3] satisfy

crossing exactly, we could have defined an alternative measure by replacing each partial

wave tIJ (s) by its difference from the tree level approximation. This gives values for

the corresponding ratio R a factor of two larger for all the numbers in Table I, leaving

the qualitative comparison the same.
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Figure 1: Real and imaginary parts of the ππ I = 0 S-wave inverse ampli-
tude, f(s) = 1/t00(s) for s+iε, from Eq. (3), calculated using Scheme II. Note
the way the pole, which is the Adler zero in the partial wave, dominates the
behaviour of the inverse.
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Figure 2: Real and imaginary parts of the ππ I = 0 S-wave inverse am-
plitude without the contribution of the pole, f(s) − fpole(s), for s + iε,
calculated from Eq. (3) according to Scheme I, which has no left hand cut,
and Scheme II. Notice how the behaviour of the real part (solid line) of the
amplitude at s = 0 and s = 4µ2 reflects the strength of the relevant cut
discontinuity, which is just the imaginary part (dashed line).
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Figure 3: The ππ I = 0 S-wave phase shift, δ0
0 in degrees, below KK

threshold as a function of ππ mass E =
√

s. The dashed line is the
result obtained with no left hand cut contribution (Scheme I); the solid
line comes from the explicit evaluation of the left hand cut dispersive in-
tegral (Scheme II); the dotted lines are obtained with additional summa-
tion assumptions (Schemes III and IV). The experimental results are from
Protopopescu et al. [10] (diamonds), the energy-independent analysis by
Ochs [11] (triangles) and the Ke4 decay data of Rosselet et al. [13] (squares).
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Figure 4: The ππ I = 1 P -wave phase shift, δ1
1 in degrees, below KK threshold

as a function of ππ mass E =
√

s. The dashed line is the result obtained with
no left hand cut contribution (Scheme I); the solid line comes from the explicit
evaluation of the left hand cut dispersive integral (Scheme II); the dotted lines
are obtained with additional summation assumptions (Schemes III and IV). The
experimental data are from Protopopescu et al. [10] (diamonds) and the energy-
independent analysis by Ochs [11] (triangles).
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Figure 5: The ππ I = 2 S-wave phase shift, δ2
2 in degrees, below KK

threshold as a function of ππ mass E =
√

s. The dashed line is the re-
sult obtained with no left hand cut contribution (Scheme I); the solid line
comes from the explicit evaluation of the left hand cut dispersive integral
(Scheme II); the dotted lines are obtained with additional summation as-
sumptions (Schemes III and IV). The experimental data are from the anal-
yses by Hoogland et al. [12].
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